Arbitrary style transfer (AST) transfers arbitrary artistic styles onto content images. Despite the recent rapid progress, existing AST methods are either incapable or too slow to run at ultra-resolutions (e.g., 4K) with limited resources, which heavily hinders their further applications. In this paper, we tackle this dilemma by learning a straightforward and lightweight model, dubbed MicroAST. The key insight is to completely abandon the use of cumbersome pre-trained Deep Convolutional Neural Networks (e.g., VGG) at inference. Instead, we design two micro encoders (content and style encoders) and one micro decoder for style transfer. The content encoder aims at extracting the main structure of the content image. The style encoder, coupled with a modulator, encodes the style image into learnable dual-modulation signals that modulate both intermediate features and convolutional filters of the decoder, thus injecting more sophisticated and flexible style signals to guide the stylizations. In addition, to boost the ability of the style encoder to extract more distinct and representative style signals, we also introduce a new style signal contrastive loss in our model. Compared to the state of the art, our MicroAST not only produces visually superior results but also is 5-73 times smaller and 6-18 times faster, for the first time enabling super-fast (about 0.5 seconds) AST at 4K ultra-resolutions. Code is available at https://github.com/EndyWon/MicroAST.
translated by 谷歌翻译
在本文中,我们研究了组合半伴侣(CMAB),并专注于减少遗憾的批量$ k $的依赖性,其中$ k $是可以拉动或触发的武器总数每个回合。首先,对于用概率触发的臂(CMAB-T)设置CMAB,我们发现了一个新颖的(定向)触发概率和方差调制(TPVM)条件,可以替代各种应用程序的先前使用的平滑度条件,例如级联bandsistits bandits bandits。 ,在线网络探索和在线影响最大化。在这种新条件下,我们提出了一种具有方差感知置信区间的BCUCB-T算法,并进行遗憾分析,将$ O(k)$ actival降低到$ o(\ log k)$或$ o(\ log^2 k) )$在遗憾中,大大改善了上述申请的后悔界限。其次,为了设置具有独立武器的非触发CMAB,我们提出了一种SESCB算法,该算法利用TPVM条件的非触发版本,并完全消除了对$ k $的依赖,以备受遗憾。作为有价值的副产品,本文使用的遗憾分析可以将几个现有结果提高到$ O(\ log K)$的一倍。最后,实验评估表明,与不同应用中的基准算法相比,我们的表现出色。
translated by 谷歌翻译
最近的研究表明,通用风格转移的成功取得了巨大的成功,将任意视觉样式转移到内容图像中。但是,现有的方法遭受了审美的非现实主义问题,该问题引入了不和谐的模式和明显的人工制品,从而使结果很容易从真实的绘画中发现。为了解决这一限制,我们提出了一种新颖的美学增强风格转移方法,可以在美学上为任意风格产生更现实和令人愉悦的结果。具体而言,我们的方法引入了一种审美歧视者,以从大量的艺术家创造的绘画中学习通用的人类自愿美学特征。然后,合并了美学特征,以通过新颖的美学感知样式(AESSA)模块来增强样式转移过程。这样的AESSA模块使我们的Aesust能够根据样式图像的全局美学通道分布和内容图像的局部语义空间分布有效而灵活地集成样式模式。此外,我们还开发了一种新的两阶段转移培训策略,并通过两种审美正规化来更有效地训练我们的模型,从而进一步改善风格化的性能。广泛的实验和用户研究表明,我们的方法比艺术的状态综合了美学上更加和谐和现实的结果,从而大大缩小了真正的艺术家创造的绘画的差异。我们的代码可在https://github.com/endywon/aesust上找到。
translated by 谷歌翻译
由于简单但有效的训练机制和出色的图像产生质量,生成的对抗网络(GAN)引起了极大的关注。具有生成照片现实的高分辨率(例如$ 1024 \ times1024 $)的能力,最近的GAN模型已大大缩小了生成的图像与真实图像之间的差距。因此,许多最近的作品表明,通过利用良好的潜在空间和博学的gan先验来利用预先训练的GAN模型的新兴兴趣。在本文中,我们简要回顾了从三个方面利用预先培训的大规模GAN模型的最新进展,即1)大规模生成对抗网络的培训,2)探索和理解预训练的GAN模型,以及预先培训的GAN模型,以及3)利用这些模型进行后续任务,例如图像恢复和编辑。有关相关方法和存储库的更多信息,请访问https://github.com/csmliu/pretretaining-gans。
translated by 谷歌翻译
一击生成域Adaption旨在仅使用一个参考图像将一个预训练的发电机传输到一个新域中。但是,适用的生成器(i)要生成从预训练的生成器继承的多种图像,而(ii)(ii)忠实地获取参考图像的特定领域特定属性和样式,这仍然非常具有挑战性。在本文中,我们提出了一种新颖的单发性生成域适应方法,即Difa,用于多元化和忠实的适应。对于全球级别的适应,我们利用参考图像的剪辑嵌入与源图像的平均嵌入之间的差异来限制目标发生器。对于本地级别的适应,我们引入了一个细心的样式损失,该损失将每个适应图像的中间令牌与参考图像的相应令牌保持一致。为了促进多样化的生成,引入了选择性的跨域一致性,以选择和保留域共享属性,以编辑潜在的$ \ MATHCAL {W}+$ $空间来继承预训练的生成器的多样性。广泛的实验表明,我们的方法在定量和定性上都优于最先进的实验,尤其是对于大域间隙的情况。此外,我们的DIFA可以轻松地扩展到零击生成域的适应性,并具有吸引力的结果。代码可从https://github.com/1170300521/difa获得。
translated by 谷歌翻译
公平的机器学习旨在避免基于\ textit {敏感属性}(例如性别和种族)对个人或子人群的治疗。公平机器学习中的那些方法是基于因果推理确定的歧视和偏见的。尽管基于因果关系的公平学习吸引了越来越多的关注,但当前的方法假设真正的因果图是完全已知的。本文提出了一种一般方法,以实现反事实公平的概念时,当真实的因果图未知。为了能够选择导致反事实公平性的功能,我们得出了条件和算法,以识别\ textit上变量之间的祖先关系{部分定向的无循环图(pdag)},具体来说,可以从一类可学到的dag中学到。观察数据与域知识相结合。有趣的是,我们发现可以实现反事实公平,就好像真正的因果图是完全知道的一样,当提供了特定的背景知识时:敏感属性在因果图中没有祖先。模拟和实际数据集的结果证明了我们方法的有效性。
translated by 谷歌翻译
由于开放的社交平台允许大量未经验证的信息流动,因此谣言可以出乎意料地出现并迅速传播。但是,现有的谣言检测(RD)模型通常会采用相同的培训和测试分布,并且无法应对不断变化的社交网络环境。本文提出了一个持续的及时调整RD(CPT-RD)框架,该框架避免了在顺序任务学习过程中上游任务的灾难性遗忘(CF),并使域任务之间的双向知识转移。具体而言,我们提出以下策略:(a)我们的设计明确地将共享和特定于领域的知识分解,从而减少了优化过程中不同领域的干扰; (b)几种技术旨在转移上游任务的知识以应对紧急情况; (c)任务条件的及时性超网(TPHNET)用于合并过去的域。此外,CPT-RD避免了CF,而无需进行排练缓冲区。
translated by 谷歌翻译
专家(MOE)的稀疏门控混合物可以用少量计算复杂性来放大网络容量。在这项工作中,我们调查多语言自动语音识别(ASR)网络如何用简单的路由算法进行缩放,以便实现更好的准确性。更具体地,我们将稀疏门的MOE技术应用于两种网络:序列到序列变压器(S2S-T)和变压器换能器(T-T)。我们通过一组关于多语言数据的一组ASR实验证明了MOE网络可以分别使用S2S-T和T-T将相对字误差率降低16.5 \%和4.7 \%。此外,我们在各种条件下彻底调查了MOE对T-T架构上的T-T架构的影响:流模式,非流模式,使用语言ID和带有MOE的标签解码器。
translated by 谷歌翻译
在本文中,我们介绍了纹理改革器,一个快速和通用的神经基础框架,用于使用用户指定的指导进行交互式纹理传输。挑战在三个方面:1)任务的多样性,2)引导图的简单性,以及3)执行效率。为了解决这些挑战,我们的主要思想是使用由i)全球视图结构对准阶段,ii)局部视图纹理细化阶段和III)的新的前馈多视图和多级合成程序。效果增强阶段用相干结构合成高质量结果,并以粗略的方式进行细纹细节。此外,我们还介绍了一种新颖的无学习视图特定的纹理改革(VSTR)操作,具有新的语义地图指导策略,以实现更准确的语义引导和结构保存的纹理传输。关于各种应用场景的实验结果展示了我们框架的有效性和优越性。并与最先进的交互式纹理转移算法相比,它不仅可以实现更高的质量结果,而且更加显着,也是更快的2-5个数量级。代码可在https://github.com/endywon/texture --reformer中找到。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译